a2 United States Patent

Reinhold et al.

US009229709B2

US 9,229,709 B2
Jan. 5, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

POLYPHASIC MODULES FOR SOFTWARE
DEVELOPMENT

Inventors: Mark B. Reinhold, Menlo Park, CA
(US); Alexander R. Buckley, Cupertino,
CA (US); Jonathan J. Gibbons,
Mountain View, CA (US); Karen M. P.
Kinnear, Boxborough, MA (US)

Assignee: ORACLE INTERNATIONAL
CORPORATION, Redwood Shores,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 806 days.

Appl. No.: 12/771,121

Filed: Apr. 30, 2010

Prior Publication Data

US 2011/0271254 Al Nov. 3, 2011

Int. CL.

GO6F 9/44 (2006.01)

U.S. CL

CPC .. GOG6F 8/71 (2013.01); GO6F 8/10 (2013.01);
GO6F 8/31 (2013.01)

Field of Classification Search

CPC GOGF 8/31

USPC 717/120

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2005/0028151 Al* 2/2005 Rothetal. ... 717/162
2007/0250575 Al* 10/2007 Tseitlin et al. .. ... 709/205
2008/0320460 Al* 12/2008 Milleretal. ................ 717/162

OTHER PUBLICATIONS

Sun Microsystems, “Project Jigsaw: Language changes for Mod-
ules”, Feb 10, 2009, https://web.archive.org/web/20090210012949/
http://openjdk java.net/projects/jigsaw/doc/language html.*
Charles Humble, “Jigsaw Falling Into Place”, Jun 24, 2009, http://
www.infoq.com/news/2009/06/jigsaw.*

* cited by examiner

Primary Examiner — Wei Zhen

Assistant Examiner — Lanny Ung

(74) Attorney, Agent, or Firm — Park, Vaughan, Fleming &
Dowler LLP; Chia-Hsin Suen

&7

The disclosed embodiments provide a system that facilitates
the development and maintenance of a software program.
This system includes a software development kit (SDK) and
aruntime system for the software program. During operation,
the system associates classes of the software program with
module declarations for a set of modules and uses the module
declarations to manage dependencies in the software program
throughout the life cycle of the software program.

ABSTRACT

20 Claims, 5 Drawing Sheets

Associate classe:

502

program with module declarations
for set of modules

s of software

v

Use module declarations to manage

Y

dependencies in software program
504

Reverse
dependency constraints?
506
Yes
h 4

Adjust visibility of module(s) based
on reverse dependency constrants
508

=]

Continue
managing dependencies?
512



U.S. Patent

Jan. 5§, 2016 Sheet 1 of 5
\
104
Compilation

112
Installation

114
Execution

FIG. 1

106
Testing
108
Packaging
102
> Module
System
110
Deployment

US 9,229,709 B2



U.S. Patent Jan. 5,2016 Sheet 2 of 5 US 9,229,709 B2

—
N

Module System
210

Software Program

206 208
Modue | ® ® @1 Modue
202 Ru%me
SDK
System
FIG. 2
302 314
Module Declaration /
304
Name
306 module myModule @ 1.0 {
Version requires A;
requires B €@ 2.0;
308 requires C @ [2.0, 3.0);
Members permits D;
310 }
Dependencies
312
Reverse Dependency Constraints
FIG. 3B

FIG. 3A



U.S. Patent Jan. 5,2016 Sheet 3 of 5 US 9,229,709 B2

422
402 / 410

0@20,M@1.0

0@ 1.0

N@1.0

414 \—4% 418

412

424
/_ o@30

‘THIS @ [4.0, THIS)

N@ 4.0

420

\—4%

FIG. 4



U.S. Patent Jan. 5,2016 Sheet 4 of 5 US 9,229,709 B2

Associate classes of software
program with module declarations
for set of modules
502

!

Use module declarations to manage
—»| dependencies in software program
504

Reverse
dependency constraints?
506

Yes
A\

Adjust visibility of module(s) based
on reverse dependency constrants
508

Module
declarations modified?
510

No

Continue
managing dependencies?
512

No FIG. 5

End




U.S. Patent Jan. 5,2016 Sheet 5 of 5 US 9,229,709 B2

600
P
612

FIG. 6



US 9,229,709 B2

1
POLYPHASIC MODULES FOR SOFTWARE
DEVELOPMENT

RELATED APPLICATION

The subject matter of this application is related to the
subject matter in a co-pending non-provisional application by
inventors Alexander Buckley, Mark Reinhold, and Karen
Kinnear and filed on the same day as the instant application
entitled “Access Control in Modules for Software Develop-
ment,” having Ser. No. 12/771,654.

The subject matter of this application is also related to the
subject matter in a co-pending non-provisional application by
inventors Jonathan Gibbons, Alexander Buckley, and Mark
Reinhold entitled “Compile-Time Management of Polypha-
sic Modules,” having Ser. No. 12/823,918, and filing date 25
Jun. 2010.

The subject matter of this application is also related to the
subject matter in a co-pending non-provisional application by
inventors Mark Reinhold, Alexander Buckley, and Jonathan
Gibbons, entitled “Dependency Resolution in Polyphasic
Modules,” having serial number Ser. No. 12/914,499, and
filing date 28 Oct. 2010.

BACKGROUND

1. Field

The present embodiments relate to module systems for
software development. More specifically, the present
embodiments relate to techniques for managing software
dependencies using polyphasic modules with reverse depen-
dency constraints.

2. Related Art

Within software systems, increasing sophistication and
functionality are typically accompanied by corresponding
increases in code size and complexity. For example, the addi-
tion of new features to a software program may require the
implementation of new components, which in turn may
increase the number of dependencies within the software
program. Over time, changes to the software program may
lead to increases in defects, debugging time, redundancy, and
lack of readability. The continued development of a software
system without effective complexity management may con-
sequently reduce performance and increase maintenance risk
to the point of rendering the software system unusable and/or
unmanageable.

Issues associated with increasing software complexity may
be mitigated by modularizing software systems. Modular
software utilizes components that are self-contained and that
facilitate a separation of concerns. For example, individual
modules may be developed, tested, and used independently of
one another in a software system. In addition, a module’s
functionality and dependencies may be explicitly declared
through an interface provided by the module. Modularized
software may thus be significantly more maintainable, easier
to understand, and less complex than monolithic software.

Hence, increased use of modularity may improve the
design, maintenance, performance, scalability, and growth of
software systems.

SUMMARY

The disclosed embodiments provide a system that facili-
tates the development and maintenance of a software pro-
gram. This system includes a software development kit
(SDK) and a runtime system for the software program. Dur-
ing operation, the system associates classes of the software

10

15

20

25

30

35

40

45

50

55

60

65

2

program with module declarations for a set of modules and
uses the module declarations to manage dependencies in the
software program throughout the life cycle of the software
program.

In some embodiments, each of the modules is uniquely
identified by a module identity.

In some embodiments, each module declaration from the
module declarations includes at least one of a member, a
dependency, and a reverse dependency constraint.

In some embodiments, the reverse dependency constraint
specifies the visibility of a module defined by the module
declaration to other modules.

In some embodiments, the visibility of the module to a
dependent module is based on at least one of:

(1) the name of the dependent module;

(i1) the version of the dependent module; and

(iii) the dependency of the dependent module on the mod-
ule.

In some embodiments, the life cycle of the software pro-
gram comprises compilation, testing, packaging, deploy-
ment, installation, and execution of the software program.

In some embodiments, the module declarations are
obtained separately from source code for the software pro-
gram.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows the life cycle of a software program in accor-
dance with an embodiment.

FIG. 2 shows the development and maintenance of a soft-
ware program using a module system in accordance with an
embodiment.

FIG. 3 A shows the structure of a module identity in accor-
dance with an embodiment.

FIG. 3B shows an exemplary module identity in accor-
dance with an embodiment.

FIG. 4 shows an exemplary set of modules in accordance
with an embodiment.

FIG. 5 shows a flowchart illustrating the process of facili-
tating the development of a software program in accordance
with an embodiment.

FIG. 6 shows a computer system in accordance with an
embodiment.

In the figures, like reference numerals refer to the same
figure elements.

DETAILED DESCRIPTION

The following description is presented to enable any per-
son skilled in the art to make and use the embodiments, and is
provided in the context of a particular application and its
requirements. Various modifications to the disclosed embodi-
ments will be readily apparent to those skilled in the art, and
the general principles defined herein may be applied to other
embodiments and applications without departing from the
spirit and scope of the present disclosure. Thus, the present
invention is not limited to the embodiments shown, but is to
be accorded the widest scope consistent with the principles
and features disclosed herein.

The data structures and code described in this detailed
description are typically stored on a computer-readable stor-
age medium, which may be any device or medium that can
store code and/or data for use by a computer system. The
computer-readable storage medium includes, but is not lim-
ited to, volatile memory, non-volatile memory, magnetic and
optical storage devices such as disk drives, magnetic tape,
CDs (compact discs), DVDs (digital versatile discs or digital



US 9,229,709 B2

3

video discs), or other media capable of storing code and/or
data now known or later developed.

The methods and processes described in the detailed
description section can be embodied as code and/or data,
which can be stored in a computer-readable storage medium
as described above. When a computer system reads and
executes the code and/or data stored on the computer-read-
able storage medium, the computer system performs the
methods and processes embodied as data structures and code
and stored within the computer-readable storage medium.

Furthermore, methods and processes described herein can
be included in hardware modules or apparatus. These mod-
ules or apparatus may include, but are not limited to, an
application-specific integrated circuit (ASIC) chip, a field-
programmable gate array (FPGA), a dedicated or shared pro-
cessor that executes a particular software module or a piece of
code at a particular time, and/or other programmable-logic
devices now known or later developed. When the hardware
modules or apparatus are activated, they perform the methods
and processes included within them.

FIG. 1 shows the life cycle of a software program in accor-
dance with an embodiment. The life cycle begins with a
compilation 104 phase, in which source code for the software
program is converted into an executable format. Next, the
compiled software program undergoes a testing 106 phase to
detect failures, defects, and/or other issues in the implemen-
tation of the software program. For example, testing 106 may
be carried out to analyze the correctness, security, scalability,
performance, maintainability, and/or usability of the software
program.

After testing 106, packaging 108 of the software program
may involve creating a software package in an archive format
from the software program’s executable code. The software
package may then undergo deployment 110 and installation
112 on a computer system. For example, a web application
may be deployed and installed on a server computer, while a
native application may be deployed and installed on multiple
personal computers. Finally, execution 114 of the software
program allows the software program’s intended functional-
ity to be provided to an end user.

Those skilled in the art will appreciate that changes such as
patches, upgrades, maintenance, and/or new releases may be
periodically made to the software program. Moreover, such
changes may be propagated through some or all of the phases
of'the life cycle. For example, the addition of new features to
the software program may require that the software program
be recompiled, tested, packaged, deployed, installed, and
executed with the new features.

Those skilled in the art will also appreciate that changes to
the software program may increase the complexity of the
software program, which may eventually interfere with the
maintainability, usability, and/or performance of the software
program. For example, modifications to the software program
may be difficult to document and/or track across all phases
104-114 of the software program’s life cycle. Over time, such
modifications may interfere with the continued use and devel-
opment of the software program by obscuring the design of
the software program, increasing redundancy, and introduc-
ing new, unknown dependencies among components in the
software program.

To mitigate issues associated with increased software com-
plexity, a module system 102 may be used to facilitate the
development and maintenance of the software program. In
one or more embodiments, module system 102 uses modular
information at all phases 104-114 of the life cycle to manage
dependencies in the software program. As discussed below,
such polyphasic modularization may facilitate the develop-

10

15

20

25

30

35

40

45

50

55

60

65

4

ment of the software program by improving transparency,
cohesion, performance, scalability, and maintainability in the
software program.

FIG. 2 shows the development and maintenance of a soft-
ware program 210 using module system 102 in accordance
with an embodiment. As shown in FIG. 2, a software devel-
opment kit (SDK) 202 and a runtime system 204 may interact
with module system 102 to manage software program 210
across all stages of the life cycle of software program 210. For
example, SDK 202 and runtime system 204 may correspond
to the Java (Java™ is a registered trademark of Sun Micro-
systems, Inc.) Development Kit (JDK) and Java Runtime
Environment (JRE).

As mentioned above, module system 102 may use
polyphasic modules to facilitate the development of software
program 210. In particular, polyphasic modularization of
software program 210 may begin with the creation of module
declarations for a set of modules 206-208 to be used in soft-
ware program 210.

In one or more embodiments, modules 206-208 corre-
spond to standalone components in software program 210
that may be independently programmed, tested, and modi-
fied. As discussed below with respect to FIGS. 3A-3B, each
module 206-208 may be defined, organized, and used through
a corresponding module identity and module declaration. In
addition, an interface to a module may be based on the mem-
bers of the module. For example, the module may be accessed
through public methods and/or data in the module’s mem-
bers. Logical boundaries between modules 206-208 may fur-
ther be enforced by enabling inter-module interaction only
through the interfaces to the modules, thus effectively hiding
implementation details of modules 206-208 from one
another.

In other words, modules 206-208 may correspond to
encapsulated abstractions of functionality in software pro-
gram 210 with well-defined capabilities and dependencies.
Modules 206-208 may thus provide a large amount of flex-
ibility in organizing the structure of software program 210.
For example, Java classes may be grouped into modules 206-
208 based on the functionality and/or use of the classes in
software program 210 instead of language-based constraints
such as package membership.

In one or more embodiments, module declarations for
modules 206-208 are obtained separately from source code
for software program 210. For example, module declarations
for modules 206-208 in a Java program may be stored in
“module compilation unit” files (e.g., “module-info.java”)
that are separate from source files containing Java classes,
interfaces, enumerations, and/or annotation types. Such
decoupling of module declarations from module implemen-
tations may further enable the creation of modules 206-208
based on factors that facilitate the design and development of
software program 210, such as separation of concerns, scal-
ability, and performance.

The independent creation and procurement of module dec-
larations may additionally allow module system 102 to begin
modularizing software program 210 before software program
210 is compiled. For example, module system 102 may allow
module declarations for modules 206-208 to be created (e.g.,
using SDK 202) before development of source code for soft-
ware program 210 is complete. Module system 102 may
proceed with using the module declarations to manage depen-
dencies in software program 210 through the compilation,
testing, packaging, deployment, installation, and execution
phases of the life cycle of software program 210.

For example, module system 102 may allow SDK 202 to
map modules 206-208 in a Java program from “module-



US 9,229,709 B2

5

info.java” files to “module-info.class” files during compila-
tion. Module system 102 may additionally provide applica-
tion-programming interfaces (APIs) that allow compilers,
testing frameworks, annotation processors, Java archive
tools, Java Virtual Machines (JVMs), and/or other tools and
utilities associated with various phases of the life cycle of
software program 210 to modularize software program 210
through the “module-info.java™ and/or “module-info.class”
files. In particular, the tools and/or utilities may use modules
206-208 to perform tasks such as physically dividing large
packages into self-contained modules, determining module
memberships, resolving dependencies between modules 206-
208 (e.g., during compilation), building class paths from
module dependencies, and/or providing access control
between modules 206-208 (e.g., during execution).

FIG. 3A shows the structure of a module declaration 302 in
accordance with an embodiment. Module declaration 302
may define a module in a software program (e.g., software
program 210 of FIG. 2). In addition, module declaration 302
may beused by a module system (e.g., module system 102 of
FIG. 1) to manage dependencies in the software program
throughout the life cycle of the software program.

In one or more embodiments, module declaration 302 is
associated with a name 304 and a version 306. More specifi-
cally, the module defined by module declaration 302 may be
uniquely identified by a module identity corresponding to the
combination of name 304 and version 306. For example, the
module may be identified by placing an “@ symbol between
name 304 and version 306. As aresult, module identities of “A
@1.0”“A@1.1;”“B@2.0,” and “C @ 2.0” may be used to
represent four different modules in the software program.
Alternatively, the module identity may correspond to one or
more other unique values, such as a timestamp, hash value,
and/or numeric identifier.

Module declaration 302 may also be used to determine one
or more members 308, dependencies 310, and/or reverse
dependency constraints 312 associated with the module.
Members 308 may correspond to classes and/or compilation
units that belong to the module. Members 308 may be explic-
itly specified within module declaration 302, declared in
source code for classes and/or compilation units, and/or
inferred from the directory hierarchy of the software pro-
gram. Inference of module membership based on directory
hierarchy is described in a co-pending non-provisional appli-
cation by inventors Jonathan Gibbons, Alexander Buckley,
and Mark Reinhold and filed on the same day as the instant
application, entitled “Compile-Time Management of
Polyphasic Modules,” having Ser. No. 12/823,918, and filing
date 25 Jun. 2010, which is incorporated herein by reference.

Dependencies 310 may correspond to one or more modules
on which the module depends. In particular, dependencies
310 on other modules may be declared if one or more mem-
bers 308 require access to classes in the other modules. Con-
versely, reverse dependency constraints 312 may be used to
restrict the dependence of other modules on the module. In
particular, module declaration 302 may include one or more
reverse dependency constraints 312 to limit the visibility of
the module to a dependent module. Reverse dependency con-
straints 312 may be based on a number of criteria, such as the
names of the dependent modules, the versions of the depen-
dent modules, and/or the dependency of the dependent mod-
ules on the module. Reverse dependency constraints are dis-
cussed in further detail below with respect to FIG. 4.

FIG. 3B shows an exemplary module declaration 314 in
accordance with an embodiment. The first line of module
declaration 314 may identify the module by including the
“module” keyword followed by the name and version of the

15

40

45

55

6

module (e.g., “myModule @ 1.0”). In other words, the first
line of module declaration 314 may specify the unique mod-
ule identity for the module. The second, third, and fourth lines
may declare three different dependencies ofthe module using
the “requires” keyword. In particular, the first dependency
may be satisfied by any version of the “A” module, the second
dependency may be met only by version 2.0 of the “B” mod-
ule, and the third dependency may be met by any version of
the “C” module between 2.0 and 3.0.

Module declaration 314 also includes a reverse depen-
dency constraint (e.g., “permits D). The reverse dependency
constraint may be specified using the “permits” keyword and
indicate that the module is only visible to modules named
“D. In other words, the reverse dependency constraint may
limit dependencies on the module by preventing modules that
do not meet the reverse dependency constraint from even
seeing the module. On the other hand, any module may estab-
lish a dependency on the module if module declaration 314
lacks a reverse dependency constraint.

FIG. 4 shows an exemplary set of modules 402-412 in
accordance with an embodiment. More specifically, FIG. 4
shows the use of dependencies 414-420 and reverse depen-
dency constraints 422-424 in restricting access and visibility
among modules 402-412. As shown in FIG. 4, module 402
has a module identity of “M @ 1.0 and a dependency 414 on
amodule named “N.” Module 404 is identified by “M @ 2.0”
and has a dependency 416 on module “N @ 5.0.” Module 406
is identified by “N @ 1.0” and includes reverse dependency
constraints 422 of “O @ 2.0” and “M @ 1.0.” Module 408 is
identified by “N @ 5.0” and has a reverse dependency con-
straint 424 of “THIS @ [4.0, THIS).” Module 410 is identified
by “O @ 1.0” and has a dependency 418 on module “N @
1.0 Module 412 includes a module identity of “O @ 3.0”
and a dependency 420 on module “N @ 4.0.”

As discussed above, both dependencies 414-420 and
reverse dependency constraints 422-424 may affect the
dependence of modules 402-412 on one another. Beginning
with module 402, dependency 414 is satisfied by module 406.
At the same time, reverse dependency constraint 422 permits
a module named “M @ 1.0 to depend on module 406. As a
result, module 402 is able to satisty dependency 414 with
module 406.

Modules 408 and 412 both have dependencies 416 and 420
on the “N” module but do not satisfy reverse dependency
constraint 422. Because module 406 may not be visible to
modules 408 and 412, modules 408 and 412 cannot depend on
module 406. However, reverse dependency constraint 424
(e.g., “"THIS @ [4.0, THIS)”) includes a special operator “*”
that limits the visibility of module 408 based on the expres-
sion of dependencies by dependent modules. Moreover,
reverse dependency constraint 424 may use a self-referencing
operator (e.g., “THIS”) to describe dependencies on module
408 that satisfy reverse dependency constraint 424. In par-
ticular, the use of “THIS” in reverse dependency constraint
424 may allow modules with dependencies (e.g., dependen-
cies 414-420) that include the name of module 408 and ver-
sions ranging from 4.0 to the version of module 408 to depend
onmodule 408. Thus, modules 404 and 412 are able to see and
depend on module 408.

Finally, module 410 is unable to establish a dependency on
another module because module 410 requires a module
named “N” but cannot satisfy the reverse dependency con-
straints 422-424 of either module 406-408 named “N.” As
discussed above, modules 406-408 may be hidden from mod-
ule 410 to prevent module 410 from establishing a depen-
dency on either module. Consequently, fine-grained access



US 9,229,709 B2

7

control may be enabled among modules 402-412 by control-
ling the overall visibility of each module with a reverse
dependency constraint.

Consequently, dependencies 414-420 and reverse depen-
dency constraints 422-424 may establish high cohesion
among modules 402-412 by restricting visibility to cooperat-
ing modules and preventing non-cooperating modules from
relying on the cooperating modules. In turn, increased cohe-
sion among modules 402-412 may facilitate the management
of code complexity while increasing code readability and
reusability.

FIG. 5 shows a flowchart illustrating the process of facili-
tating the development of a software program in accordance
with an embodiment. In one or more embodiments, one or
more of the steps may be omitted, repeated, and/or performed
in a different order. Accordingly, the specific arrangement of
steps shown in FIG. 5 should not be construed as limiting the
scope of the embodiments.

First, classes of the software program are associated with
module declarations for a set of modules (operation 502). The
module declarations may correspond to definitions for the
modules that are obtained separately from source code for the
software program. As a result, the module declarations may
be created and/or obtained early in the life cycle of the soft-
ware program and used to manage dependencies in the soft-
ware program (operation 504) throughout the life cycle. For
example, the module declarations may be used to resolve
dependencies, hide implementation details, and increase per-
formance during compilation, testing, packaging, deploy-
ment, installation, and/or execution of the software program.

The management of dependencies may be affected by
reverse dependency constraints in the module declarations
(operation 506). In particular, reverse dependency constraints
may affect the visibility of modules containing the reverse
dependency constraints. If reverse dependency constraints
are found, the visibility of one or more modules is adjusted
based on the reverse dependency constraints (operation 508).
Furthermore, the management of visibility independently of
accessibility within the modules may enable fine-grained
control of inter-module interaction and dependencies.

The module declarations may continue to be used to man-
age the dependencies, with or without reverse dependency
constraints, until the module declarations are modified (op-
eration 510). If the module declarations are modified, new
module declarations containing the modifications are
obtained (operation 502), and dependencies in the software
are managed using the new module declarations (operations
504-508).

Dependencies may continue to be managed (operation
512) using the module declarations until the software pro-
gram is no longer used. For example, the module declarations
may be modified in response to changes to the software pro-
gram. Because the changes may be well-documented and
managed across all phases of the software program’s life
cycle, complexity may remain at an acceptable level, while
maintainability and usability may be preserved in the soft-
ware program.

FIG. 6 shows a computer system in accordance with an
embodiment. Computer system 600 includes a processor 602,
memory 604, storage 606, and/or other components found in
electronic computing devices. Processor 602 may support
parallel processing and/or multi-threaded operation with
other processors in computer system 600. Computer system
600 may also include input/output (I/0) devices such as a
keyboard 608, a mouse 610, and a display 612.

Computer system 600 may include functionality to execute
various components of the present embodiments. In particu-

10

15

20

25

30

35

40

45

50

55

60

8

lar, computer system 600 may include an operating system
(not shown) that coordinates the use of hardware and software
resources on computer system 600, as well as one or more
applications that perform specialized tasks for the user. To
perform tasks for the user, applications may obtain the use of
hardware resources on computer system 600 from the oper-
ating system, as well as interact with the user through a
hardware and/or software framework provided by the oper-
ating system.

In one or more embodiments, computer system 600 pro-
vides a system for facilitating the development of a software
program. The system may include an SDK and a runtime
system. The SDK and runtime system may associate classes
of'the software program with module declarations for a set of
modules. The SDK and runtime system may also use the
module declarations to manage dependencies in the software
program throughout the life cycle of the software program.

In addition, one or more components of computer system
600 may be remotely located and connected to the other
components over a network. Portions of the present embodi-
ments (e.g., SDK, runtime system, etc.) may also be located
on different nodes of a distributed system that implements the
embodiments. For example, the present embodiments may be
implemented using a cloud computing system that provides a
module system for managing the life cycles of software pro-
grams.

The foregoing descriptions of various embodiments have
been presented only for purposes of illustration and descrip-
tion. They are not intended to be exhaustive or to limit the
present invention to the forms disclosed. Accordingly, many
modifications and variations will be apparent to practitioners
skilled in the art. Additionally, the above disclosure is not
intended to limit the present invention.

What is claimed is:

1. A computer-implemented method, comprising:

associating classes of a software program with module

declarations for a set of modules; and

using the module declarations to manage dependencies in

the software program throughout a life cycle of the soft-
ware program;

wherein a first module declaration of the module declara-

tions comprises a reverse dependency constraint for a
first module within the set of modules;

wherein the reverse dependency constraint limits a visibil-

ity of the first module towards one or more dependent
modules based on one or more dependencies for the one
or more dependent modules; and

wherein determining whether a second module is allowed

to depend on the first module comprises:

allowing the second module to depend on the first mod-
ule if the second module declares at least one depen-
dency that satisfies the reverse dependency constraint;
and

hiding the first module from the second module if the
second module does not declare at least one depen-
dency that satisfies the reverse dependency constraint.

2. The computer-implemented method of claim 1, wherein
each of the modules is uniquely identified by a module iden-
tity.

3. The computer-implemented method of claim 1, wherein
each module declaration from the module declarations
includes at least one of:

a member;

a dependency; and

a reverse dependency constraint.



US 9,229,709 B2

9

4. The computer-implemented method of claim 1, wherein
the visibility of the first module to the one or more dependent
modules is further based on at least one of:

a name of the dependent module; and

a version of the dependent module.

5. The computer-implemented method of claim 1, wherein
the life cycle of the software program comprises compilation,
testing, packaging, deployment, installation, and execution of
the software program.

6. The computer-implemented method of claim 1, wherein
the module declarations are obtained separately from source
code for the software program.

7. The computer-implemented method of claim 1, wherein
the module declarations are stored in one or more files that do
not include source code for the software program.

8. The computer-implemented method of claim 1, wherein
a name of the reverse dependency constraint refers to a name
of the first module and wherein the reverse dependency con-
straint refers to a version of the first module to define a version
range.

9. The computer-implemented method of claim 1:

wherein the reverse dependency constraint comprises a

module name and a module version range;

wherein the second module declares at least one depen-

dency that satisfies the reverse dependency constraint if
the at least one dependency specifies that the second
module depends on a module with the module name and
a module version that falls within the module version
range.

10. A system, comprising:

a processor;

a software development kit (SDK) for a software program;

and

a runtime system for the software program coupled to the

processot,

wherein the SDK and the runtime system are configured to:

associate classes of the software program with module
declarations for a set of modules; and

use the module declarations to manage dependencies in
the software program throughout a life cycle of the
software program,

wherein a first module declaration of the module declara-

tions comprises a reverse dependency constraint for a
first module within the set of modules;

wherein the reverse dependency constraint limits a visibil-

ity of the first module towards one or more dependent
modules based on one or more dependencies for the one
or more dependent modules; and

wherein determining whether a second module is allowed

to depend on the first module comprises:

allowing the second module to depend on the first mod-
ule if the second module declares at least one depen-
dency that satisfies the reverse dependency constraint;
and

hiding the first module from the second module if the
second module does not declare at least one depen-
dency that satisfies the reverse dependency constraint.

11. The system of claim 10, wherein each of the modules is
uniquely identified by a module identity.

10

15

20

25

30

35

40

45

50

55

10

12. The system of claim 10, wherein each module decla-
ration from the module declarations includes at least one of:

a member;

a dependency; and

a reverse dependency constraint.

13. The system of claim 10, wherein the visibility of the
first module to the one or more dependent modules is further
based on at least one of:

a name of the dependent module; and

a version of the dependent module.

14. The system of claim 10, wherein the life cycle of the
software program comprises compilation, testing, packaging,
deployment, installation, and execution of the software pro-
gram.

15. The system of claim 10, wherein the module declara-
tions are obtained separately from source code for the soft-
ware program.

16. A non-transitory computer-readable storage medium
storing instructions that when executed by a computer cause
the computer to perform a method, the method comprising:

associating classes of a software program with module

declarations for a set of modules; and

using the module declarations to manage dependencies in

the software program throughout a life cycle of the soft-
ware program,

wherein a first module declaration of the module declara-

tions comprises a reverse dependency constraint for a
first module within the set of modules;

wherein the reverse dependency constraint limits a visibil-

ity of the first module towards one or more dependent
modules based on one or more dependencies for the one
or more dependent modules; and

wherein determining whether a second module is allowed

to depend on the first module comprises:

allowing the second module to depend on the first mod-
ule if the second module declares at least one depen-
dency that satisfies the reverse dependency constraint;
and

hiding the first module from the second module if the
second module does not declare at least one depen-
dency that satisfies the reverse dependency constraint.

17. The computer-readable storage medium of claim 16,
wherein each of the modules is uniquely identified by a mod-
ule identity.

18. The computer-readable storage medium of claim 17,
wherein each module declaration from the module declara-
tions includes at least one of:

a member;

a dependency; and

a reverse dependency constraint.

19. The computer-readable storage medium of claim 16,
wherein the visibility of the first module to the one or more
dependent modules is further based on at least one of:

a name of the dependent module; and

a version of the dependent module.

20. The computer-readable storage medium of claim 16,
wherein the life cycle of the software program comprises
compilation, testing, packaging, deployment, installation,
and execution of the software program.

#* #* #* #* #*



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 09,229,709 B2 Page 1of1
APPLICATION NO. 2 12/771121

DATED : January 5, 2016

INVENTOR(S) : Reinhold et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
In drawings,

On sheet 4 of 5, in FIG. 5, under reference numeral 508, line 2, delete “constrants” and insert
-- constraints --, therefor.

Signed and Sealed this
Twenty-seventh Day of September, 2016

Dhecbatle K Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office



